Galois connection between regular subsets in topological space

Emilia Przemska

Pomeranian University in Slupsk

The 46th Summer Symposium in Real Analysis

Contents

- 1. Regular subsets in topological spaces
- 2. Galois connections

Contents

- 1. Regular subsets in topological spaces
- 2. Galois connections
- 3. Closure operators determines by Galois connections

Contents

- 1. Regular subsets in topological spaces
- 2. Galois connections
- 3. Closure operators determines by Galois connections
- 4. Alexandroff topology

A classical Kuratowski's result

The closure (resp. interior) of $A \subset X$ we denote by \overline{A} (resp. Int(A)).

A classical Kuratowski's result

The closure (resp. interior) of $A \subset X$ we denote by \overline{A} (resp. Int(A)).

Kuratowski, K., Sur l'operation A de l'analysis situs, Fund. Math., (1992), 182-199.

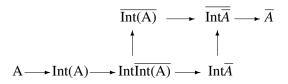
A classical result of Kuratowski states that, from a given subset of a topological space it is possible to make at most 7 distinct sets given in the graph below, by composing the closure and the interior operations.

A classical Kuratowski's result

The closure (resp. interior) of $A \subset X$ we denote by \overline{A} (resp. Int(A)).

Kuratowski, K., Sur l'operation A de l'analysis situs, Fund. Math., (1992), 182-199.

A classical result of Kuratowski states that, from a given subset of a topological space it is possible to make at most 7 distinct sets given in the graph below, by composing the closure and the interior operations.



Classical types of subsets in topological space

The generalized closure operators (resp. interior operators) are determined by these operations and have the form $A \cup \Phi(A)$ (resp. $A \cap \Phi(A)$), where

$$\Phi(A) \in \{Int\overline{Int(A)}, Int\overline{A}, \overline{Int(A)}, Int\overline{A} \cap \overline{Int(A)}, Int\overline{A} \cup \overline{Int(A)}, \overline{Int\overline{A}}\}.$$

Classical types of subsets in topological space

The generalized closure operators (resp. interior operators) are determined by these operations and have the form $A \cup \Phi(A)$ (resp. $A \cap \Phi(A)$), where

$$\Phi(A) \in \{\mathit{Int}\overline{\mathit{Int}(A)}, \mathit{Int}\overline{A}, \overline{\mathit{Int}(A)}, \mathit{Int}\overline{A} \cap \overline{\mathit{Int}(A)}, \mathit{Int}\overline{A} \cup \overline{\mathit{Int}(A)}, \overline{\mathit{Int}\overline{A}}\}.$$

Let's recall the classical types of the appropriate generalized open and generalized closed subsets:

Classical types of subsets in topological space

The generalized closure operators (resp. interior operators) are determined by these operations and have the form $A \cup \Phi(A)$ (resp. $A \cap \Phi(A)$), where

$$\Phi(A) \in \{\mathit{Int}\overline{\mathit{Int}(A)}, \mathit{Int}\overline{A}, \overline{\mathit{Int}(A)}, \mathit{Int}\overline{A} \cap \overline{\mathit{Int}(A)}, \mathit{Int}\overline{A} \cup \overline{\mathit{Int}(A)}, \overline{\mathit{Int}\overline{A}}\}.$$

Let's recall the classical types of the appropriate generalized open and generalized closed subsets:

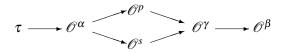
Definition

For a topological space (X, τ) , we denote:

- $\mathscr{O}^{\alpha} := \{A \subset X : A \subset Int\overline{Int(A)}\}, \mathscr{C}^{\alpha} := \{A \subset X : Int\overline{A} \subset A\}$
- $\mathscr{O}^s := \{A \subset X : A \subset \overline{Int(A)}\}, \mathscr{C}^s := \{A \subset X : Int\overline{A} \subset A\}$
- $\mathscr{O}^p := \{A \subset X : A \subset Int\overline{A}\}, \mathscr{C}^p := \{A \subset X : \overline{Int(A)} \subset A\}$
- $\mathscr{O}^{\gamma} := \{A \subset X : A \subset \overline{Int(A)} \cup Int\overline{A}\}, \mathscr{C}^{\gamma} := \{A \subset X : \overline{Int(A)} \cap Int\overline{A} \subset A\}$
- $\mathscr{O}^{\beta} := \{A \subset X : A \subset \overline{Int\overline{A}}\}, \mathscr{C}^{\beta} := \{A \subset X : Int\overline{Int(A)} \subset A\}$

Relationships among the families of subsets of classical types

As a consequence of Kuratowski's result, we have the following relationships among the families that we defined above



$$\mathscr{C} \longrightarrow \mathscr{C}^{\alpha} \xrightarrow{\mathscr{C}^{p}} \mathscr{C}^{\gamma} \longrightarrow \mathscr{C}^{\beta}$$

The Kuratowski $\{b, i, \vee, \wedge\}$ -problem.

- Gardner, B. J-Jackson, M.G., The Kuratowski closure-complement theorem, New Zealand J.Math., (2008), 9-44.
- Sherman, D., Variations on Kuratowski's 14-set theorem, The American Mathematical Monthly, (2010), 113-123 Sherman and, Gardner and Jackson have redenoted as $b(A) = \overline{A}$ and i(A) = Int(A), the operation of the closure and the interior operator, respectively.

The Kuratowski $\{b, i, \vee, \wedge\}$ -problem.

- Gardner, B. J-Jackson, M.G., The Kuratowski closure-complement theorem, New Zealand J.Math., (2008), 9-44.
- Sherman, D., Variations on Kuratowski's 14-set theorem, The American Mathematical Monthly, (2010), 113-123

Sherman and, Gardner and Jackson have redenoted as $b(A) = \overline{A}$ and i(A) = Int(A), the operation of the closure and the interior operator, respectively.

These authors posed the following question

The Kuratowski $\{b, i, \vee, \wedge\}$ -problem.

- Gardner, B. J-Jackson, M.G., The Kuratowski closure-complement theorem, New Zealand J.Math., (2008), 9-44.
- Sherman, D., Variations on Kuratowski's 14-set theorem, The American Mathematical Monthly, (2010), 113-123

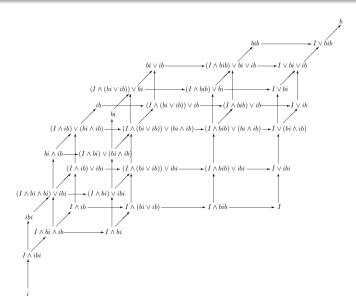
Sherman and, Gardner and Jackson have redenoted as $b(A) = \overline{A}$ and i(A) = Int(A), the operation of the closure and the interior operator, respectively.

These authors posed the following question

Ouestion

What is the number of sets obtainable from a given subset of a topological space using the operators derived by composing members of the collection $\{b, i, \vee, \wedge\}$, where \vee and \wedge denote the union and intersection, respectively?

Hasse diagram



Operators from Hasse diagram

Each operator from this Hasse graph is a function

$$(\Phi,\Psi):\mathscr{P}(X)\to\mathscr{P}(X)$$

Operators from Hasse diagram

Each operator from this Hasse graph is a function

$$(\Phi,\Psi):\mathscr{P}(X)\to\mathscr{P}(X)$$

define by

$$(\Phi, \Psi)(A) = (A \cap \Psi(A)) \cup \Phi(A)$$

Operators from Hasse diagram

Each operator from this Hasse graph is a function

$$(\Phi, \Psi) : \mathscr{P}(X) \to \mathscr{P}(X)$$

define by

$$(\Phi, \Psi)(A) = (A \cap \Psi(A)) \cup \Phi(A)$$

or equivalently

$$(\Phi, \Psi)(A) = (A \cup \Phi(A)) \cap \Psi(A),$$

where $A \subset X$ and $\Phi, \Psi \in \{\underline{ibi, ib, bi, bi, bi \land \underline{ib, bi} \lor \underline{ib, bib}}\}$ i.e, $\Phi, \Psi \in \{\underline{IntInt(\ldots)}, \underline{Int(\ldots)}, \underline{Int(\ldots)}, \underline{Int(\ldots)}, \underline{Int(\ldots)}\}$

Fixed points

The problem of fixed points of such operators was examined in the paper "The lattices of families of regular sets in topological spaces." Mathematica Slovaca 70.2 (2020): 477-488.

Fixed points

The problem of fixed points of such operators was examined in the paper "The lattices of families of regular sets in topological spaces." Mathematica Slovaca 70.2 (2020): 477-488.

Definition of regular subsets:

As a result, for any pair (Φ, Ψ) , the family of all fixed points that are characterized as follows

$$\begin{split} \mathscr{D}(\Phi, \Psi) &= \{A \subset X : \Phi(A) \subset A \subset \Psi(A)\}, \\ \text{where } \Phi, \Psi &\in \{Int\overline{Int(\ldots)}, \overline{Int(\ldots)}, \overline{Int(\ldots)}, \overline{Int(\ldots)}, \overline{Int(\ldots)}, \overline{Int(\ldots)}\} \end{split}$$

Fixed points

The problem of fixed points of such operators was examined in the paper "The lattices of families of regular sets in topological spaces." Mathematica Slovaca 70.2 (2020): 477-488.

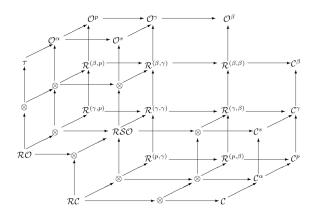
Definition of regular subsets:

As a result, for any pair (Φ, Ψ) , the family of all fixed points that are characterized as follows

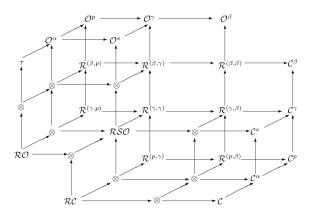
$$\mathscr{D}(\Phi, \Psi) = \{A \subset X : \Phi(A) \subset A \subset \Psi(A)\},$$
 where $\Phi, \Psi \in \{Int\overline{Int(\dots)}, \underline{Int(\dots)}, \overline{Int(\dots)}, \overline{Int(\dots)}, \overline{Int(\dots)}\}$

The elements of these families are called **regular subsets**.

The relationships among families of regular subsets



The relationships among families of regular subsets



All families of regular subsets are of the form $\mathcal{R}^{(a,b)} = \mathcal{C}^a \cap \mathcal{O}^b$ where $\mathcal{C}^a \in \{\mathcal{C}, \mathcal{C}^\alpha, \mathcal{C}^s, \mathcal{C}^p, \mathcal{C}^\gamma, \mathcal{C}^\beta\}$ and $\mathcal{O}^b \in \{\tau, \mathcal{O}^\alpha, \mathcal{O}^s, \mathcal{O}^p, \mathcal{O}^\gamma, \mathcal{O}^\beta\}.$

The main result of this investigation is the following theorem.

The main result of this investigation is the following theorem.

Theorem

Any family $\mathcal{D}(\Phi, \Psi)$ of regular subsets of a topological space (X, τ) has the structure of a complemented complete lattice under the operations defined as follows:

$$A \oplus B = (\Phi, \Psi)(A \cup B) = ((A \cup B) \cap \Psi(A \cup B)) \cup \Phi(A \cup B)$$

$$A \odot B = (\Phi, \Psi)(A \cap B) = ((A \cap B) \cap \Psi(A \cap B)) \cup \Phi(A \cap B)$$

$$A' = (\Phi, \Psi)(X \setminus A) = ((X \setminus A) \cap \Psi(X \setminus A)) \cup \Phi(X \setminus A)$$

A Birkhoff system

Birkhoff, G., Lattice theory. Vol. 25. American Mathematical Soc., (1940).

As well known, the partial ordering in a lattice $\mathcal L$ is closely related to the algebraic operations in $\mathcal L$.

A Birkhoff system

Birkhoff, G., Lattice theory. Vol. 25. American Mathematical Soc., (1940).

As well known, the partial ordering in a lattice $\mathcal L$ is closely related to the algebraic operations in $\mathcal L$.

So, in our case in a family $\mathscr{D}(\Phi, \Psi)$ we have the lattice order \prec given by

$$A \prec B \Leftrightarrow A \odot B = A \text{ and } A \oplus B = B$$
,

A Birkhoff system

Birkhoff, G., Lattice theory. Vol. 25. American Mathematical Soc., (1940).

As well known, the partial ordering in a lattice $\mathscr L$ is closely related to the algebraic operations in $\mathscr L$.

So, in our case in a family $\mathscr{D}(\Phi, \Psi)$ we have the lattice order \prec given by

$$A \prec B \Leftrightarrow A \odot B = A \text{ and } A \oplus B = B$$
,

It turns out that in every lattice $\mathcal{D}(\Phi, \Psi)$ the order means inclusion i.e.,

$$A \subset B \Leftrightarrow A \odot B = A \text{ and } A \oplus B = B$$
,

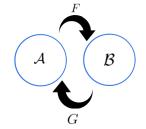
Galois connection

- Ore, O., Galois connexions, Transactions of the American mathematical society (1944): 493-513.
- Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloquium Publications, Providence, Rhode Island, 1st edition, 1940 (3rd edition 1967).
- Schmidt, J., Beitrage zur Filtertheorie. II, Mathematische Nachrichten 10.3 - 4 (1953): 197-232.

Definition

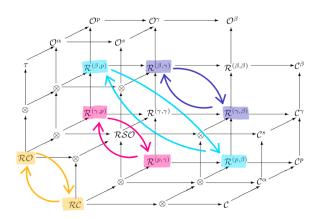
For the lattices $(\mathscr{A},<_{\mathscr{A}}),(\mathscr{B},<_{\mathscr{B}})$ and $F:\mathscr{A}\to\mathscr{B},G:\mathscr{B}\to\mathscr{A}$, the pair (F,G) of functions is a Galois connection iff the following two clauses hold:

- \bullet $x <_{\mathscr{A}} G(F(x))$ and $F(G(y)) <_{\mathscr{B}} y$
- F and G are monotonic



Question

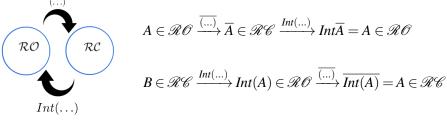
Are there Galois connections between symmetric families of regular sets?



The case of the pair $(\mathcal{RO}, \mathcal{RC})$

CASE I

Let us take the pair $(F,G) = (\overline{(\ldots)},Int(\ldots))$. Then we get:

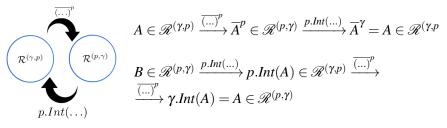


So, we obtain G(F(A)) = A and F(G(B)) = B i.e., the pair $((\overbrace{(\ldots)},Int(\ldots)))$, as it is usually called, is a perfect Galois connection.

The case of the pair $(\mathscr{R}^{(\gamma,p)},\mathscr{R}^{(p,\gamma)})$

CASE II

Using the pair of functions $(F,G) = (\overline{(\ldots)}^p, p.Int(\ldots))$ we obtain

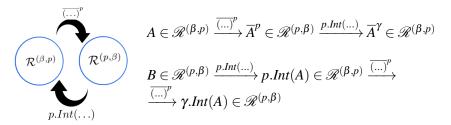


Hence, the pair $(\overline{(\ldots)}^p, p.Int(\ldots))$ is a perfect Galois connection either, because we have G(F(A)) = A and F(G(B)) = B.

The case of the pair $(\mathscr{R}^{(\beta,p)},\mathscr{R}^{(p,\beta)})$

CASE III

Taking the pair $(F,G) = (\overline{(\ldots)}^p, p.Int(\ldots))$ we obtain

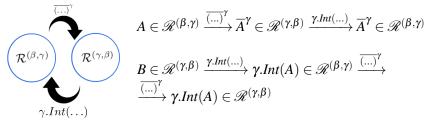


Consequently, $A \subset G(F(A)) = \overline{A}^{\gamma}$ and $\gamma.Int(A) = F(G(B)) \subset B$, so we have the classical Galois connection.

The case of the pair $(\mathscr{R}^{(\beta,\gamma)},\mathscr{R}^{(\gamma,\beta)})$

CASE IV

Finally, let's take the pair $(F,G) = (\overline{(\ldots)}^{\gamma}, \gamma.Int(\ldots))$ and we have



The conditions $A \subset G(F(A)) = \overline{A}^{\gamma}$ and $\gamma.Int(A) = F(G(B)) \subset B$ are satisfy, so we have the classical type of Galois connection.

Closure and interior operator

- Ward, M., The closure operators of a lattice, Annals of Mathematics (1942): 191-196.
 - Erne, M., A primer on Galois connections, Annals of the New York Academy of Sciences (1993): 103-125.

Definition

Given a lattice $(\mathcal{L},<)$, a function $C:L\to L$ is called a closure operator (resp. interior operator) in \mathcal{L} iff for every $x\in L$:

- **1** x < C(x) (resp. C(x) < x)
- 2 x < y implies C(x) < C(y)
- **6** C(C(x)) = C(x)

Closure and interior operator

For a given pair of lattices $(\mathscr{A}, <_{\mathscr{A}}), (\mathscr{B}, <_{\mathscr{B}})$ and a pair of functions $F : \mathscr{A} \to \mathscr{B}, G : \mathscr{B} \to \mathscr{A}$ one of the classical result says as follows

Closure and interior operator

For a given pair of lattices $(\mathscr{A}, <_{\mathscr{A}}), (\mathscr{B}, <_{\mathscr{B}})$ and a pair of functions $F : \mathscr{A} \to \mathscr{B}, G : \mathscr{B} \to \mathscr{A}$ one of the classical result says as follows

Lemma

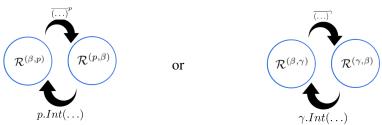
If (F,G) is a Galois connection, then:

- **1** $A \to G(F(A))$ is a closure operator in $(\mathscr{A}, <_{\mathscr{A}})$, where $A \in \mathscr{A}$.
- **2** $B \to F(G(B))$ is an interior operator in $(\mathcal{B}, <_{\mathcal{B}})$, where $B \in \mathcal{B}$.

For the pair $(\mathscr{R}^{(\beta,p)},\mathscr{R}^{(p,\beta)})$ or $(\mathscr{R}^{(\beta,\gamma)},\mathscr{R}^{(\gamma,\beta)})$

According to the cases III and IV, we have the following result:

For the pair $(\mathscr{R}^{(\beta,p)},\mathscr{R}^{(p,\beta)})$ or $(\mathscr{R}^{(\beta,\gamma)},\mathscr{R}^{(\gamma,\beta)})$



According to the cases III and IV, we have the following result:

Theorem

- **1** The function $A \to \overline{A}^{\gamma}$ is a closure operator in $\mathscr{R}^{(\beta,p)}$ and $\mathscr{R}^{(\beta,\gamma)}$,
- **2** The function $B \to \gamma.Int(B)$ is an interior operator in $\mathcal{R}^{(p,\beta)}$ and $\mathcal{R}^{(\gamma,\beta)}$.

Interval topology

Frink O., Topology in lattices, Transactions of the American Mathematical Society, 51 (1942): 569-582.

Frink has defined the interval topology of a lattice (\mathcal{L}, \prec) by taking as a sub-basis for the closed sets all closed intervals [a,b], $(-\infty,a]$ and $[b,\infty)$, where $[a,b]=\{x\in\mathcal{L}:a\prec x\prec b\}$, $(-\infty,a]=\{x\in\mathcal{L}:x\prec a\},\ [b,\infty)=\{x\in\mathcal{L}:a\prec b\}.$

Interval topology

Frink O., Topology in lattices, Transactions of the American Mathematical Society, 51 (1942): 569-582.

Frink has defined the interval topology of a lattice (\mathcal{L}, \prec) by taking as a sub-basis for the closed sets all closed intervals [a,b], $(-\infty,a]$ and $[b,\infty)$, where $[a,b] = \{x \in \mathcal{L} : a \prec x \prec b\}$, $(-\infty,a] = \{x \in \mathcal{L} : x \prec a\}$, $[b,\infty) = \{x \in \mathcal{L} : a \prec b\}$. In the lattices of type $\mathcal{R}^{(i,j)}$, where $(i,j) \in \{(\beta,p),(p,\beta),(p,\gamma),(\gamma,p),(\beta,\gamma),(\gamma,\beta)\}$ the intervals

$$(A,B) = \{ K \in \mathcal{R}^{(i,j)} : A \subset K \subset B \}$$

have the following form:

The definitions of the families of regular subsets i.e.,

$$\mathscr{D}(\Phi, \Psi) = \{A \subset X : \Phi(A) \subset A \subset \Psi(A)\}$$

suggest that the intervals of form of type $(\Phi(A), \Psi(A))$ play a special role in such families.

The definitions of the families of regular subsets i.e.,

$$\mathscr{D}(\Phi, \Psi) = \{ A \subset X : \Phi(A) \subset A \subset \Psi(A) \}$$

suggest that the intervals of form of type $(\Phi(A), \Psi(A))$ play a special role in such families.

Let's consider this issue on the example of one of these families, namely $\mathscr{R}^{(\beta,p)} = \{A \subset X : Int\overline{Int(A)} \subset A \subset Int\overline{A}\}.$

The definitions of the families of regular subsets i.e.,

$$\mathscr{D}(\Phi, \Psi) = \{ A \subset X : \Phi(A) \subset A \subset \Psi(A) \}$$

suggest that the intervals of form of type $(\Phi(A), \Psi(A))$ play a special role in such families.

Let's consider this issue on the example of one of these families, namely $\mathscr{R}^{(\beta,p)} = \{A \subset X : Int\overline{Int(A)} \subset A \subset Int\overline{A}\}.$

So, use the intervals of the type

$$(Int\overline{Int(A)},Int\overline{A}) = \{K \in \mathscr{R}^{(\beta,p)} : Int\overline{Int(A)} \subset K \subset Int\overline{A}\},$$

where $A \in \mathcal{R}^{(\beta,p)}$.

Property I

For every $A, B \in \mathcal{R}^{(\beta,p)}$ the following properties are equivalent:

- $(Int\overline{Int(B)},Int\overline{B}) \subset (Int\overline{Int(A)},Int\overline{A}).$

Property II

The family $\mathscr{B}^{(\beta,p)} = \{(Int\overline{Int(A)},Int\overline{A}) : A \in \mathscr{R}^{(\beta,p)}\}$ is a cover of $\mathscr{R}^{(\beta,p)}$.

So, it is clear that $\mathscr{B}^{(\beta,p)}$ is a base for some topology $\mathscr{T}^{(\beta,p)}$.

Property I

For every $A, B \in \mathcal{R}^{(\beta,p)}$ the following properties are equivalent:

- $(Int\overline{Int(B)}, Int\overline{B}) \subset (Int\overline{Int(A)}, Int\overline{A}).$

Property II

The family $\mathscr{B}^{(\beta,p)} = \{(Int\overline{Int(A)}, Int\overline{A}) : A \in \mathscr{R}^{(\beta,p)}\}$ is a cover of $\mathscr{R}^{(\beta,p)}$.

So, it is clear that $\mathscr{B}^{(\beta,p)}$ is a base for some topology $\mathscr{T}^{(\beta,p)}$.

Question

What are the properties of the topology $\mathscr{T}^{(\beta,p)}$?

Property I

For every $A, B \in \mathcal{R}^{(\beta,p)}$ the following properties are equivalent:

- $(Int\overline{Int(B)},Int\overline{B}) \subset (Int\overline{Int(A)},Int\overline{A}).$

Property II

The family $\mathscr{B}^{(\beta,p)} = \{(Int\overline{Int(A)}, Int\overline{A}) : A \in \mathscr{R}^{(\beta,p)}\}$ is a cover of $\mathscr{R}^{(\beta,p)}$.

So, it is clear that $\mathscr{B}^{(\beta,p)}$ is a base for some topology $\mathscr{T}^{(\beta,p)}$.

Question

What are the properties of the topology $\mathcal{T}^{(\beta,p)}$?

Theorem

 $(\mathscr{B}^{(\beta,p)},\mathscr{T}^{(\beta,p)})$ is an Aleksandroff topological space.

For any Alexandroff topology, there is an associated order relation

For any Alexandroff topology, there is an associated order relation

$$a < b \Leftrightarrow \{a\} \in \overline{\{b\}},$$

For any Alexandroff topology, there is an associated order relation

$$a < b \Leftrightarrow \{a\} \in \overline{\{b\}},$$

which is reflexive and transitive, called the specialization preorder.

For any Alexandroff topology, there is an associated order relation

$$a < b \Leftrightarrow \{a\} \in \overline{\{b\}},$$

which is reflexive and transitive, called the specialization preorder.

In our investigation the specialization preorder is define as follows

For any Alexandroff topology, there is an associated order relation

$$a < b \Leftrightarrow \{a\} \in \overline{\{b\}},$$

which is reflexive and transitive, called the specialization preorder.

In our investigation the specialization preorder is define as follows

$$A < B \Leftrightarrow (\operatorname{Int}\overline{\operatorname{Int}(A)},\operatorname{Int}\overline{A}) \supset (\operatorname{Int}\overline{\operatorname{Int}(B)},\operatorname{Int}\overline{B})$$

Relationship between $\mathcal{T}^{(\beta,p)}$ and the interval topology.

Question

What is the relationship between $\mathcal{T}^{(\beta,p)}$ and interval topology?

Relationship between $\mathscr{T}^{(\beta,p)}$ and the interval topology.

Question

What is the relationship between $\mathcal{T}^{(\beta,p)}$ and interval topology?

In the work

Frink O., Topology in lattices, Transactions of the American Mathematical Society 51 (1942): 569-582.

Frink proved that

Relationship between $\mathcal{T}^{(\beta,p)}$ and the interval topology.

Question

What is the relationship between $\mathcal{T}^{(\beta,p)}$ and interval topology?

In the work

Frink O., Topology in lattices, Transactions of the American Mathematical Society 51 (1942): 569-582.

Frink proved that

Lemma

The interval topology is T_1 .

It is easy to show the following

Relationship between $\mathscr{T}^{(\beta,p)}$ and the interval topology.

Question

What is the relationship between $\mathcal{T}^{(\beta,p)}$ and interval topology?

In the work

Frink O., Topology in lattices, Transactions of the American Mathematical Society 51 (1942): 569-582.

Frink proved that

Lemma

The interval topology is T_1 .

It is easy to show the following

Remark

The topology $\mathcal{T}^{(\beta,p)}$ is not T_1 .

Alexandroff P., Diskrete raume, 2(3) (1937), 501-519.

Classical results says that

Lemma

An Aleksandroff space is T_0 if and only if the equality of minimal open neibourhoods of points implies the equality of this points.

Alexandroff P., Diskrete raume, 2(3) (1937), 501-519.

Classical results says that

Lemma

An Aleksandroff space is T_0 if and only if the equality of minimal open neibourhoods of points implies the equality of this points.

In our case the property T_0 means the following

$$(\operatorname{Int} \overline{\operatorname{Int}(A)},\operatorname{Int} \overline{A}) = (\operatorname{Int} \overline{\operatorname{Int}(B)},\operatorname{Int} \overline{B}) \Leftrightarrow A = B$$

Alexandroff P., Diskrete raume, 2(3) (1937), 501-519.

Classical results says that

Lemma

An Aleksandroff space is T_0 if and only if the equality of minimal open neibourhoods of points implies the equality of this points.

In our case the property T_0 means the following

$$(\operatorname{Int} \overline{\operatorname{Int}(A)},\operatorname{Int} \overline{A}) = (\operatorname{Int} \overline{\operatorname{Int}(B)},\operatorname{Int} \overline{B}) \Leftrightarrow A = B$$

Example

$$A = (0,1) \cup ([1,2) \cap \mathbb{Q}), B = (0,1) \cup ([1,2) \cap \mathbb{IQ})$$

• The space $(\mathscr{B}^{(\beta,p)},\mathscr{T}^{(\beta,p)})$ is an Aleksandroff topological space which is not T_0 .

The space (B^(β,p), T^(β,p)) is an Aleksandroff topological space which is not T₀.
 Consequently,

- The space (B^(β,p), T^(β,p)) is an Aleksandroff topological space which is not T₀.
 Consequently,
- Topology $(\mathscr{B}^{(\beta,p)},\mathscr{T}^{(\beta,p)})$ is different than the interval topology.

Thank you for your attention!!!